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ABSTRACT

The response of semi-infinite ice floes to water waves is
analyzed for relatively deep water. If the floe submergence is
neglected it is found that a progressive wave is transmitted. The
stress produced by this transmitted wave is determined for various
floe thicknesses and incident wave lengths. When the submergence
is not neglected it is necessary to use a finite difference approach
to the solution. Such a solution is attempted and the results and

accompanying numerical problems are considered in detail.
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INTRODUCTION

This study continues the effort to analyze the effect of water
waves on ice floes. The previous study (Ref. l) dealt with finite
ice floes with negligible depth of submergence. In this work the
effect of water waves on semi-infinite ice floes with zero and finite
submergence depths is studied.

The {irst portion of the report is an analysis of the zero
submergence problem. The governing equations are established
and a closed-form expression for the stress produced by the trans-
mitted wave is obtained. This solution depends upon the roots of a
quintic equation, which involve the parameters of the incident
wave as well as ice properties and floe thickness. This stress is
calculated for various floe thicknesses and incident wave lengths
assuming constant ice floe properties. A sample calculation is in-
cluded. Reflection and transmission coefficients are also evaluated
and discussed.

The finite submergence case is then analyzed. Attempts at an
analytical solution are discussed and due to the complexity of the
equations these are discarded.

Finally, a finite difference approach to the solution is used
to determine the stress in the floe near the leading edge. The
limitations of computer storage severely restrict the size of the
flow field under consideration but a definite indication to the stress

pattern is established.



SEMI-INFINITE PLATE NO SUBMERGENCE

Consiier a semi-infinite elastic plate of thickness h float-
ing upon water of relatively infinite depth, as shown in Fig. 1.
If linearized theory is used then the free surface portion

of the flow field, Region 1, is given by the potential function

(1) 8 = (B oikx g ikxy -ky iot
with
o, 2%, 1 %%y
(2) 'BT='T'> =0 "1='-1r) =0
yJjy g y
and therefore
(3) ¢ = gk
where
n, = local elevation of profiic (ft.)
Iny| = incident wave amplitude (ft.)
L, = incident wave length (ft.)
Tl = incident wave period (sec.)
o = 2%/T|
k = 2w/L,
U = nylee
R = reflection coefficient
B = iU

-,
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The equation for the oscillation of a plate is

3t 2
n, a"n,
(4) D -—T + pS h - = p
ox ot
where
n, = displacement of the plate
n’E
D = _—s_z_ flexural rigidity of the plate
12(1 - v7)
h = plate thickness
Pg = mass density of plate
P = pressure exerted on the plate by the fluid
v = Poisson's ratio of the plate = %—
E = modulus of elasticity of the plate

Now if <I>2 is the potential function for Region 2 and if {:z

is of the form

ixnx -\Yy iot
(5) (I)Z = Ane e T e

then the pressure p as shown in Ref.. ]l is given by

8{)2
(6) P = = Pel|l- B¢ y=0 + gn,

where Ps is the fluid density.
If the plate displacement is equal to the water displacement

and the velocities correspond, then

-4
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i, %% o _ 1 %%
Bt C "By ) y=0 oM T 7T By Jy=0
Thus, the plate displacement is

i ixnx -Xny iot
(7) n, = o A A e e e

where the xn are five roots of the characteristic equation (9), which

is obtained by substituting (7) into (4)

8) ilp 2t hol + °%2 —iop, §, =
( T axz - P Pt8 oy y=0 Pg @y =
But
EY3 inx ot
2 _ n
‘57>y=o = “Aphpe e

therefore the characteristic equation is

5

(9) kn + H (l-ak) xn -Hk = 0
Pe8 Pgh
where H = - a = o
and k = trz/g for the incident wave.
The roots of the characteristic equation are )‘n . Witha, b, ¢, d

all greater than zero the A, may be written in the form

a5e

L e A




)‘o a positive real number

)‘L = a+ bi )‘2 = a-bi

A -c +di A

3 4 -c-di
but since the potential function §2 must decay with increasing
' )\3 and A, are not admissible. The potential §2 can be
written as

-1Xox-xoy 1)\lx-)\ly -ik x-xzy) iot

2
(10) §Z = (Te + Ale +tAe e

(=ix _x-)_y)
Now e represents a progressive wave as X
P prog

approaches infinity and thus, the term T is related to the trans-

(i)\lx-)\ly) (-i)\zx-xzy)
mission coefficient. The terms Ale and Aze

are waves which decay both with increasing x and increasing y
Now for continuity along the line x=0 the potential

functions and particle velocities must be identical so that

(11)
8§1 8§2

The plate has a free end at x = 0 so that the moment and shear

must be zero at that point, giving

2 3
9n, o,

(12) —z-=0atx=0, —3-=Oatx=0
9x 9x
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Now (11) and (12) give four boundary conditions which are
sufficient to determine the four unknown coefficients R, T, Al
and AZ .

If the subscript ( )l refers to the real part of a coefficient
and ( )2 refers to the imaginary part of a coefficient (Tl is not to
be confused with the period of the incident wave, T1 which is not

used explicitly in the analysis), then after considerable algebraic

manipulation it is found that

T, = -2yAGU/J
T, = 2yAFUN
1
Ay oE [(Ys'Y4)T1+(63'64)T2]
= 1 1
Alp = cam [B378) Ty - (vy-vy) T,
(13) , -
Aa =& [ (Y3+vy) Ty - (854 8,) T, |
= 1 ]
A * "= [ (8348) Ty +(v3+vy) T, |
Ry = Tp+A ¥4y
R, = T,+A,+A,,-U
where Al = All + 1AlZ s AZ = A?_l + iA22 etc. and

>
)

Y3Vgt 836,

"
"
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In order to find the relation between the transmitted, reflected
and input waves define EE = RR + T T where the bar indi-
cates complex conjugate, then

2 2 2 2
+R2 +Tl +T2

(14) EE = R,
Upon substitution of the quantities Ti and Ri from (13) it is
found that

EE 4 2
(15) —-Z-U = 1+—} [ZYA ‘A(YY4'1-Y'Y1+Y4)

+YY4+Y1Y3+ 6163]

Now E E is a positive quantity, being a sum of squares of real
numbers, therefore E—.zﬁ- exceeds unity. This is an apparent
violation of the equatic?n of conservation of energy which apparently
would require EE = U> = RR + TT . But work has also been
done in permanently changing the wave length from Ll = 2w/k

for the incident waves to Lo = 2w/ )‘o for the transmitted waves

and (15) expresses this.

Fig. 2 shows the variation of

=, 1/2 _ (RR) 1/2 (TT) 1/2

€=—-U_' p-_'U_—': T

™
2
n

-8-
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with incident wave length and plate thickness.

The stress in the plate reaches a maximum value near the
leading edge and then decays to a slightly lower value given by the
amplitude of the transmitted wave. The peak stress is analogous
to a transient and the stress due to the transmitted wave is analogous
to a steady state value in the sense that it is independent of x .

The transient stress Sx is found from the expression

_ 2 2\ 12
Sx - (Clx + CZx )
where 3
EshXo
c, = —25_° _ (T,P, +T,P,)
1x Zylc(l_vz) 1P+ TP,
Eshx°3
CZx = Z—Z_ (-TIPZ + TZPI)
ylo'(l-v )
where
P = -y,cos\ x+ e-bx( cos ax + 6, sin ax)
1 Yl o Y) 1
P = ey, sin\ x + e PXgj
, = Y, o e sin ax

and the units of S, will be lb/ft2 per foot of incident wave amplitude.
The stress due to the transmitted wave S* is found by allowing

x to approach infinity in the preceding expressions

_ 2 2\12
S* = (Cl + C2 )
where 3
Eshxo
(] = (-T,cos A\ x - T, sin \_x)
1 Ztr(l-vz) 1 o 2 o

-10-
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3

Eh )
CZ = ____0.2_ (Tl sin )\ox - TZ cos Xox)
20(l-v7)
giving finally
3
- _ 9Ehk° vyAU J-l/Z
- 8o

for v = 1/3.

The quantity S#* for various incident wave lengths and plate
thicknesses is shown in Fig. 3 .

For comparison with the finite submergence case, the stress
amplitude Sx for an incident wave length of 10 feet and plate thick-
ness of 5 feet has been worked out in detail as shown in Fig. 4.

As an illustrative example, suppose it is desired to find
the stress amplitude for a 15 foot thick floe at an incident wave
length of 100 feet with an incident wave amplitude of 6 inches.

From Fig. 3, S* for h=15 L, =100 is 112 lb/in® therefore

1
the desired value of S* will be
6 . 2
b = =
S 1> 112 56 1lb/in

since the stress amplitude graph is normalized to a 1 foot amplitude.

-1l-
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STRESS AMPLITUDE S, (LB/IN?)

140 T

120

100}

Pt =1.025g/cm®, Pg = 0.9 P¢
80} h= SFT, L, = IOFT.

60

40

20

. | ] 1

Es=1.44x10° LB/FT% v=1/3

0 20 40 €0 80 100 120
DISTANCE X (FT)

FIGURE 4
STRESS AMPLITUDE IN PLATE (NO SUBMERGENCE)

-al3a

140



SEMI-INFINITE PLATE WITH FINITE SUBMERGENCE

We consider a semi-infinite elastic plate submerged in water
to a depth ''a'' below the mean water line of a train of incident
harmonic waves. The coordinate y is measured positive down-
ward from the mean water line and the coordinate x is measured
parallel to the mean water line from the leading edge of the plate
positive in the direction of incoming wave propagation (i.e. positive
into the plate).

The free surface portion of the flow field must obey equation
(2) of the previous section of this report. It is assumed that this
submerged edge of the plate perturbs a relatively small portion of
the flow field and therefore that as the distance from this area
increases, the general simple harmonic character of the incident,
reflected and transmitted waves is maintained.

Ursell (Ref. 2) has shown that if a normal velocity is pre-
scribed on part of a vertical plane (i.e. thin boundary) extending
from the surface then the two dimensional problem of determining
the motion on either side of the plane as well as beneath it can be
solved for the deep water case. The motion is determined by a
comparatively simple integral equation. At the lower edge of the
plane the velocity becomes infinite due to a mathematical singu-
larity of logarithmic type. Ursell obtains his solution by assuming
that the transmitted waves have the same wave length as the incident

waves,

-l4-
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An attempt was made to modify Ursell's approach to include
the effect of the plate as well as the change in wave length of trans-
mitted waves. In so doing a very complicated set of simultaneous
integral equations is obtained. The kernels of these equations
involve the fifth order equation for the plate oscillation. The inte-
grals were found to be intractable and hence the analytical approach
was discarded in favor of a numerical means of solution,

Since no analytical solution was found for the plate with
finite submergence an approximate solution was attempted. The
coordinate system is shown in Fig. 5.

The incident waves are given by the potential function
(16) $ = ( jue KX 4 Rell* ) e kY ot

The submerged edge of the plate is assumed to perturb a
relatively small portion of the flow field, therefore, at some

station AB where x = x| the potential is

-ikxl i.kxl -ky ot
= iUe + Re e e

9%

Now as y increases Ty vanishes, thus, for sufficiently large y

(17) 2

%pc
(18) T) Y=y, =0

Again for sufficiently large x = x, the potential ¢CD which is

-17-



the asymptotic form of §2 given in equation (lO)'is assumed to

exist in the form

(19) §CD = Te e e

Along the boundary DE the equation of motion of the plate must

hold and this is given by

2 2%
(20) [& + H(l-ak)} < a3E>y- + Hk (55) = 0

Along the submerged edge of the plate EF

9%
(21) = = 0

since this edge does not move in the x direction. The free

surface condition along FA is analagous to equation (2)

(22) & = -,‘;%%)

y=0
Since the plate has a free end at the point x =0, y=a,

2

o (o
= 0
;;Z ( 9y ) x=0
(23) y=a
3
2 (9
= 0
o3 () eee
y=a

-18-
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The field equation is Laplace's Equation

(24) vls = o

which holds everywhere within A BC DE F.

There are now sufficient equations to determine & , R and T,
The size of the grid t for a finite difference solution of

the problem is unfortunately not arbitrary. The core storage

capacity of the presently available digital computer equipment

(IBM 7090) limits the size of the field considerably.

The following parameters are used in the computation

h = b5 ft.
E, = 144 x 10° 1/
v = 1/3

- 3
Ps = 1.025 gm/cm
P = 0.9 Ps
a = 4.5 feet

a -

1 = g = 1.125 ft.

Equal divisions of length £ define the nodes in the free-
surface portion of the field. There are 10 nodes in the y-direction
and at most 8 in the x-direction. The field under the plate is a
semi-logarithmic distribution of nodes where the logarithmic scale
is in the direction of increasing x and the y divisions are 1
apart as in the free-surface region. There are 16 nodes in the

x-direction and 6 in the y-direction,

-19.
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The equation for the x-divisions is

_ 1.125
~ Tog 27 - Tog 26

(25) X log 27 - log (27-m)
where 0 < m < 16 in unit steps.

In order to conserve computer storage and yet include as
much of the perturbed flow field as possible, the free-surface
portion of the field was stepped as shown in Fig. 5 .

Assuming a second order function for ¢ then the field

equation can be written as

2 1 1 1 1
Ve = cery At g Rty BT 57 8
(26) 1

! =
rd) e
ay 4
where o and y and $, are defined in Fig. 6
Along the free surface FA the slope condition (22) permits
elimination of the ficticious point '1' giving, since a =y =1,
1

V2, = ~2 (8, + 28, + &, - (4-2x0) ]

0

where the $'s have the same relations to §° as shown in Fig. 6
Along the lower boundaries AB, BC, CD Eqn. (24) the

field equation becomes respectively,

1 1
(28) ;;7'(§Z + @+ 8, 4§°) * 32 ¢,

-20-



FIGURE 6
FINITE DIFFERENCE SCHEME FOR THE FIELD EQUATION
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where §l is given by (17)

2 1 1 1 1 1
(29) Vége = ey Q17 B2 Y@y 93'(;; * ;z)%

2 2 1 1,1
(30) Viécp = aam Wi t3z %ty '(; +I_Z> &, = 0

Along the boundary DE the high order differential equation

is expressed in finite difference form using the scheme shown in

Fig. 7 .
Defining Z, = I and y' = y - 4¢ then, if
a§>
V =
N oy Zy
y'=0

and V, is a fourth order equation in x

$ -F N
(31) v, = ﬂﬁﬂ_" = % MnZNn

The constants Mn can be evaluated by curve fitting as before. It

is found that

(32) M4 = vlvl-vZVZ+v3V3-v4V4+v5V5
where
I
v = S A A
2737475

-22-
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1
v =
2 ZZIZS- Zz)(Z4- ZZ)(Z3- ZZ’
v = l
3 Z3(ZS- Z3T(Z4- Z3) (23- ZZ)
v = !
4 Zyleg- 2 012,- 23){2,- 2,
1
v =
3 Zglag - 2,025~ Z,3)1(24- 2,
Now using the field equation VZcI) = 0 the ficticious points

F, in(31) can be eliminated. For example, at point ''N"

& -
v2§~ - N-1 + 12 FN
(XN'XN-I)(XN+1'X~-1) 2t
1 1
- + ¢
[;Z (XN'XN-I)(XNH'XN)] v
$
1 N+l
+ d + =
Z_lz N*e (xn+l'x~)(xu+l'x~-l)
so that
$
1 N-1
Vv =
N ZT{
(xu'xu-l)(xnﬂ’xu-l)
(33) LI ! %
[F Xy - xn)(xuﬂ' Xy) ] )
$
1 N+l
Pzt Byt }
! (X1 - XX - X))

24~



Finally, equation (20) becomes

(34) 24 M, + H(l-ak) V, + Hk§, = 0

Similar equations express the conditions at the free end (23).

Along the boundary EF using (21)

)
(=]

(35) 517 (28, + 8, + 2 - 43,)

The system illustrated in Fig. 5 consists of 332 unknown
values of ¢ where $,,.1 = Re ($) and ¢2n = Im (), plus four
additional unknowns: The transmission coefficient T = Tl +1i T2
and reflection coefficient R = R1 + iRZ. There are 336 equations
in the system; 332 statements at node points and four additional

equations for the free-end conditions at x = 0.

The value of the stress amplitude Sx is found from the

equation
- 2 2,12
(36) Sx = s(Sl + S2 )
where
F
2
S - Re‘a"z KU
! oxt
X
L J
,
2
S - 1 2 M2 iot W
2 = m 4 —Z— € 4
9x
. J
Es h
and 8 =
2(l-v")

-25a



Values of the stress Sx are shown in Fig. 8, where the
corresponding values determined for the same plate without sub-
mergence are also shown.

In general the solution of the finite difference formulation
of the problem of non-zero submergence involves the following
steps:

1. Establish the finite difference grid and ide...ify the

nodes.

a. Choose 1 .

b. Choose the semi-logarithmic law analagous to
equation (25) for the variation of x beneath the
plate.

2. Set-up the linear equations at each node. There will

be two equations at each node (except at the plate corner

E). One equation will be for the Real part of § and

the other for the imaginary part.

a. Use Eqn. (26) at each interior node.

b. Use Eqgn. (27) along the boundary FA,

c. Use Eqn. (28) along the boundary AB.

d. Use Eqn. (29) along the boundary BC.

e, Use Egn. (30) along the boundary CD.

f. Use Eqn. (34) along the boundary DE.

g- Use Eqn. (35) along the boundary EF.

h. At point E state equations (23) using Mz and

M3 from Eqn. (31).

-26-
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Band the matrix and solve. The computer routine
used for this report was ''Linear Equation Solver of
Banded Matrices', SHARE Distribution Number 990
CORR/1490 FARWLE4F from the SHARE library.
Using the solution for Re ¢$ and Im & determine
-g-% from Eqn. (33), then finally the stress will be

given by Eqn. (36).

«28a



ANALYSIS OF RESULTS AND CONCLUSIONS

The interaction of progressive waves with a semi-infinite
ice floe has been investigated wherein the ice floe is considered
equivalent to an elastic sheet. In this investigation two approaches
have been used; neglect of the finite submergence of the floe and
consideration thereof. In the case of the former approach, a mathe-
matical method is developed wherein a closed form analytic solu-
tion for the ice floe response may be obtained. The results of the
mathematical analysis show that a portion of the incident wave
energy is reflected while some energy is transmitted beneath the
ice in the form of a progressive wave whose frequency is dependent
on both the characteristics of the ice and the incident wave length.
The partition of wave energy into transmitted and reflected energy
is represented by potential function coefficients denoted as trans-
mission and reflection coefficients. The variation of these coeffi-
cients as a function of incident wave length for a 5 foot thick floe
is shown in Figure 2.

Further, the absolute value of the bending stress in the ice
floe due to the transmitted wave is shown in Figure 3 as a function
of floe thickness and incident wave length.

A specific example showing the variation of the bending stress
with the distance from the free edge of the ice floe is shown in
Figure 4. The parameters chosen for the calculation were an ice

thickness of 5 feet and an incident wave length of 10 feet {(also a
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unity amplitude for the incident wave height). Whern observing the
stress variations depicted in Figures 3 and 4 certain salient poirts
should be observed. First the stresses shown represent "absolute''
values. However, the variation of the ice response is harmonic
in time. Hence, at a given location in the ice, it is clear that the
stress values shown in these figures alternate between the positive
value shown and the negative of this value. Secondly, in referring
to Figure 4 which shows the stress variation as a function of
position from the free edge of the floe, it is important to realize
that the ''transient' stress values (i.e. those values close to the
free edge) are within about 10 per cent of the ''steady state'' stress
values (at positions far removed from the free edge). Also note
that the transient effect exists for distances greater than 10 wave
lengths of the incident wave from the free edge. Although only one
specific example has been calculated for the transient response,
this example is important from a comparison standpoint with the
numerical example worked for the same floe but where the finite
submergence has been included.

Turning now to the numerical example, some comment on the
choice of parameters and the mathematics behind the results are in
order.

It is clear that the choice of an input wave length of 10 feet
and an ice thickness of 5 feet are physically unrealistic (Ref. 3). The
necessity for the choice of parameters is due to the computational

procedure that we have chosen and not to a limitation imposed by the
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mathematical model. In order to include the transient effect of the
submerged edge of the floe, the finite difference grid should extend
several incident wave lengths in either direction from the edge of
the floe. Further, to decay the effect of the transient in the verti-
cal direction, the grid should extend several incident wave lengths
vertically downward from the edge of the floe. The decay of the
transient in all cases may be shown to be of such a form that the
longer the incident wave lengtn, the larger must be the region
investigated around the submerged edge of the floe. Conversely,
as the incident wave length becomes shorter, this region diminishes
in extent. Since the size of this region greatly influences the
number of grid nodal points investigated and hence the number
of simultaneous field and boundary equations (i.e. the size of the
solution matrix), it is clear that the solution matrix is of a minimum
size for a short wave length.

For the particular incident wave length chosen for the numeri-
cal investigation conducted in this report (L = 10 ft.), we obtained
a solution matrix corresponding to a total of 336 simultaneous
equations and unknowns which correspond to 166 grid nodal points.
The particular type of matrix involved in this problem is a banded
matrix with a band width of about 80. Such a matrix can be solved
by the IBM 7090 using core or immediate access storage. However,
this represents the practical limit of the immediate access storage.
Hence, an increase in matrix size or equivalently, an increase in

input wave length would exceed this storage which would then
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necessitate the use of tape units. Although such a computational
procedure is feasible, the computer run time could easily increase
by an order of magnitude or more from the run time using only
immediate access core storage. Unfcortunately, we were limited

in this investigation to a small computer budget. Hence the problem
investigated was necessarily tailored so the resulting matrix
solution did not exceed core storage. In the event that the com-
puter run time could economically cease to be a governing criterion
then longer incident wave lengths and other ice floe thicknesses
could be investigated. We feel that this would be valuable from
several standpoints.

First, the influence of the incident wave length and ice floe
thickness on the ice floe response could better be understood, both
from a fundamental standpoint and in comparison to the neglect of
the finite floe submergence. Secondly, and of equal importance
mathematically, certain computational assumptions used in the
present analysis could be more fully investigated. These computa-

tional assumptions are outlined as follows:

1. In transforming the Laplacian field equations to finite dif-
ference form, second order central difference formulas were
developed. However, along the ice-fluid interface it was
necessary to switch to higher order forward differences for
the fourth order boundary condition. This technique should
be verified by increasing the order of the finite difference

formula used in the field equations to the same order as the
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boundary condition equations. Such an approach would in-
crease the width of the banding in the solution matrix and
hence necessitate the use of tape transfer in performing the

computer computation.

2. There was no check run on the validity of the choice of grid
size. Hence a computational run should be performed on
the basis of a smaller size grid. Again, such a process

would require the use of tape transfer.

3. Finally, the effect of the region size investigated and the
accuracy with which the computer satisfies the assemblage

of simultaneous equations should be ascertained.

The first two points, as well as the effect of region size,
can most simply be answered by performing multiple solutions;
varying certain parameters with each solution, and comparing
results in each case. Fo> instance, in the case of the effect of field
size, all other parameters being fixed, the field could be increased
by varying amounts and the solution for each case compared. When
an optimum field size is reached, the solution at any point within the
region investigated should not further vary as the field size is
increased.

The accuracy of computer solution can only be checked by sub-
stituting the answers back into the original equations and investi-
gating the significance of the error between the computed equation

value and the input equation value. Such a procedure involves the
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analysis of solution stability and may be investigated through the

use of known techniques.

However, the question raised as to the accuracy of solution
will only effect the quantative results of the present analysis. We
are, however, in a position to discuss qualitatively the effect of
finite submergence of the floe for the numerical example included
in this report. A complete knowledge of this effect must naturally
await a detailed analysis of the influence of input wave length and
floe thickness and an experimental substantiation of the mathe-
matical model used.

The significant qualitative results of the numerical exampie
worked, especially in comparison to the results obtained from the

zero submergence case, are listed below:

1. Comparing the stress amplitude variation in Figures 4 and
8 (zero submergence and finite submergence respectively),
it may be observed that the transient stress is about an order
of magnitude higher near the leading edge of the floe when
finite submergence is included. This result is not surprising
when it is considered that the barrier caused by the submerged
front of the floe severely alters the local flow pattern, which,
in turn, highly perturbs the local velocity characteristics
inducing a pressure peak close to the floe's leading edge.
However, the barrier also tends to greatly reflect the incident
wave energy which leaves less energy to be transmitted in the

form of progressive waves beneath the floe. Indeed, a
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comparison of Figures 4 and 8 trnds to substantiate this in
that the ''steady state'' stress appears to be of a lower mag-
nitude in the case of finite submergence than when the

submergence is neglected.

2. The transition to the ''steady state' response of the floe
appears to be much more rapid in the case of finite sub-
mergence. In fact, the transient condition appears to die
out within several wave lengths of the incident wave, indi-
cating that wave length conversion and energy reflection is

taking place very near the edge of the floe.

The above observations lead one to conclude that breakup of
the floe might well be a progressive process; initial edge fractures
which create new boundaries which, in turn, lead to new edge
fractures, etc. Moreover, and of prime importance, is the indi-
cation that the magnitude of the steady state stress is less in the
case of finite submergence. This implies the possibility that a
conservative estimate of the bending stresses in the floe may be
obtained on the basis of the relatively simple zero submergence
approximation. The justification of this must naturally await more
refined and complete analysis.

In NESCO's opinion, it is important to further pursue the
mathematical investigation in the directions stated above. However,
it is also very important to obtain direct experimental verification

of the mathematical model. Hence, due to the high computational
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costs attendant to a rigorous mathematical extension, we feel that
the next logical step in studying the response of ice floes to wave
excitation is to obtain direct experimental evidence via field obser-
vations. In particular, we urge that studies be made of ice floe
deflections as a function of time and location in the floe. A properly
designed study of this sort will yield the period of the waves present
in the area, the magnitude of stresses involved, their spatial
variation, and the dynamic strength characteristics of the ice.
Subsidiary studies should be conducted on the importance of floe
thickness variations and the range of variation of incident wave
lengths and wave amplitudes. A careful analysis of such studies
will then indicate the proper direction to proceed mathematically
and hence justify and minimize the expenses involved.

A detailed proposal of such an experimental study is presently
being prepared by NESCO. This proposal will be submitted in the

near future.
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LIST OF SYMBOLS

a depth of submergence

g acceleration of gravity

h floe thickness

k circular wave-number

) grid size in finite difference scheme

n summation index or exponent

P pressure exerted by fluid on plate

s stress factor

t time

vu factors in difference expression

x or x, dimension measured parallel to surface (positive
into floe)

y depth dimension (positive downward)

zy incremental distance in x-direction

An constants in potential function

B related to incident wave amplitude

Cn factors in stress expression

D modulus of rigidity of plate

Es modulus of elasticity of plate
related to energy content of system

F, G J factors in stress expressions

F, ficticious point in finite difference scheme

H factor in characteristic equation

-39-



o
o

L

< a H1H 1v @ o v Z

transmitted wave length

incident wave length

factor in characteristic equation

factors in stress expression

reflected energy factor

''steady state'' stress amplitude

stress amplitude at station x

incident energy factor

incident wave period

incident wave amplitude factor

first derivative in y-direction along interface
number of node in finite difference scheme
ratio of incident wave-number to progressive wave-number

’Xl n
Re k-ro (see definition of LY )

)‘l n
Im | — (see definition of xl )

Y3Vgt 838,

energy coefficient

incident wave profile
incident wave amplitude
wave profile along interface
progressive wave-number

complex root of characteristic equation

Poisson's ratio for plate
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complex potential function

Re (QZN-I)

Im (&, ;)

reflection coefficient
mass density of plate
mass density of fluid
circular frequency
transmission coefficient
Laplacian operator
complex conjugate

real part

imaginary part
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